Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38338586

RESUMO

Food waste is a major issue that is increasingly affecting our environment. More than one-third of food is wasted, resulting in over $400 billion in losses to the U.S. economy. While composting and other small recycling practices are encouraged from person-to-person, it is not enough to balance the net loss of 80 million tons per year. Currently, one of the most promising routes for reducing food waste is through microbial fermentation, which can convert the waste into valuable bioproducts. Among the compounds produced from fermentation, 2,3-butanediol (2,3-BDO) has gained interest recently due to its molecular structure as a building block for many other derivatives used in perfumes, synthetic rubber, fumigants, antifreeze agents, fuel additives, and pharmaceuticals. Waste feedstocks, such as food waste, are a potential source of renewable energy due to their lack of cost and availability. Food waste also possesses microbial requirements for growth such as carbohydrates, proteins, fats, and more. However, food waste is highly inconsistent and the variability in composition may hinder its ability to be a stable source for bioproducts such as 2,3-BDO. This current study focuses specifically on post-consumer food waste and how 2,3-BDO can be produced through a non-model organism, Bacillus licheniformis YNP5-TSU during non-sterile fermentation. From the dining hall at Tennessee State University, 13 food waste samples were collected over a 6-month period and the compositional analysis was performed. On average, these samples consisted of fat (19.7%), protein (18.7%), ash (4.8%), fiber (3.4%), starch (27.1%), and soluble sugars (20.9%) on a dry basis with an average moisture content of 34.7%. Food waste samples were also assessed for their potential production of 2,3-BDO during non-sterile thermophilic fermentation, resulting in a max titer of 12.12 g/L and a 33% g/g yield of 2,3-BDO/carbohydrates. These findings are promising and can lead to the better understanding of food waste as a defined feedstock for 2,3-BDO and other fermentation end-products.

2.
Waste Manag ; 120: 248-256, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33310601

RESUMO

Conversion of food waste into 2,3-butanediol (2,3-BDO) via microbial fermentation provides a promising way to reduce waste disposal to landfills and produce sustainable chemicals. However, sterilization of food waste, an energy- and capital-costly process, is generally required before fermentation to avoid any contamination, which reduces the energy net output and economic feasibility of food waste fermentation. In this study, we investigated the non-sterile fermentation of food waste to produce 2,3-BDO using a newly isolated thermophilic and alkaliphilic B. licheniformis YNP5-TSU. Three unitary food waste samples (i.e., pepper, pineapple, cabbage wastes) and one miscellaneous food waste mixture were respectively inoculated with B. licheniformis YNP5-TSU under non-sterile conditions. At 50 °C and an initial pH of 9.0, B. licheniformis YNP5-TSU was able to consume all sugars in food waste and produce 5.2, 5.9, 5.9 and 4.3 g/L of 2,3-BDO within 24 h from pepper, pineapple, cabbage and miscellaneous wastes, respectively, corresponding to a yield of 0.40, 0.38, 0.41 and 0.41 g 2,3-BDO/g sugar. These 2,3-BDO concentrations and yields from the non-sterile fermentations were comparable to those from the traditional sterile fermentations, which produced 4.0-6.8 g/L of 2,3-BDO with yields of 0.31-0.48 g 2,3-BDO/g sugar. Moreover, B. licheniformis was able to ferment various food wastes (pepper, pineapple and miscellaneous wastes) without any external nutrient addition and produce similar 2,3-BDO quantities. The non-sterile fermentation of food waste using novel thermophilic and alkaliphilic B. licheniformis YNP5-TSU provides a robust and energy-efficient approach to convert food waste to high-value chemicals.


Assuntos
Bacillus licheniformis , Eliminação de Resíduos , Butileno Glicóis , Fermentação , Alimentos
3.
Mol Biotechnol ; 61(8): 579-601, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31168761

RESUMO

Microbes are ubiquitously distributed in nature and are a critical part of the holobiont fitness. They are perceived as the most potential biochemical reservoir of inordinately diverse and multi-functional enzymes. The robust nature of the microbial enzymes with thermostability, pH stability and multi-functionality make them potential candidates for the efficient biotechnological processes under diverse physio-chemical conditions. The need for sustainable solutions to various environmental challenges has further surged the demand for industrial enzymes. Fueled by the recent advent of recombinant DNA technology, genetic engineering, and high-throughput sequencing and omics techniques, numerous microbial enzymes have been developed and further exploited for various industrial and therapeutic applications. Most of the hydrolytic enzymes (protease being the dominant hydrolytic enzyme) have broad range of industrial uses such as food and feed processing, polymer synthesis, production of pharmaceuticals, manufactures of detergents, paper and textiles, and bio-fuel refinery. In this review article, after a short overview of microbial enzymes, an approach has been made to highlight and discuss their potential relevance in biotechnological applications and industrial bio-processes, significant biochemical characteristics of the microbial enzymes, and various tools that are revitalizing the novel enzymes discovery.


Assuntos
Proteínas de Bactérias , Enzimas , Proteínas Fúngicas , Microbiologia Industrial , Engenharia Metabólica , DNA Recombinante/genética , DNA Recombinante/metabolismo
4.
Genome Announc ; 5(28)2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28705979

RESUMO

Undisturbed hot springs inside Yellowstone National Park remain a dynamic biome for novel cellulolytic thermophiles. We report here the draft genome sequence of one of these isolates, Bacillus altitudinis YNP4-TSU.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...